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1. Tre first problem relating to the motion of a solid body, in a viscous liquid which
was succeasfully aftacked was that of a sphere, the solution of which was given by
Professor STOKES in 1850, in his memoir “On the Efféct of the Internal Friction of
Fluids on Pendulums,” * Cﬂmbrid'ge._'Ph”il. Soc, Trans.,’ vol. 9, in the following cases:
(i.) when the sphere is -pérf'ﬂrming small oscillations along o straight hine; (ii.) when
the sphere is constrained to move with uniform veloniity' in a atraight line ; (iii.)
when the sphere is surrounded by an infinite liquid and constrained to Totate with
uniform angular velocity about a fixed diameter : it being supposed, in the last two
cases, that sufficient time hasa elapsed for the motion to have become steady. In the
same memoir he also discusses the motion of a cylinder and a dise. The sameiclass
of problems hus also been considered by MEYER™ and ORERBECK,} the latter of whom
has obtained the solution 1n the case of the -steady motion of an ellipsoid, which
moves parallel to any one of its principal axes with uniform velocity. The torsional
oscillations about u hxed diameter, of A EPI\EI‘E which is either filled with liquid or is
surronnded by an infinite liquid when slipping takes pluce at the surface of the sphore,
forms the subject of a joint memoir by HeLMHOLTZ and ProTrRowsK1.} ,

~ Very little appears to have heen effected with repard to the solution of problems
in which a viscous liquid is set in motion in any given manner and then left to itself.
Tbe solution, when the liquid is hounded by a plane which moves parallel to itself, is
given by Professor STokEs at the end of his memoir referred to above ; and the solu-
tions of certain problems of two-dimensionn) motion l}h\{ﬂr been given by STEARN.§
In the present paper I propose to 6btain the solution for a sphere moving in a viscous
liquid in the following cuses :—(i.) when the sphere is moving in & straaght line under -
the action of a constant force, such as gravity ; (ii.) when the sphere is surronnded by
visecous liquid and is set m rotation about & fixed diameter and then left to itself.

* ¢ Crelle, Journ. Math.,' vol. 73, p. 31.
t * Crelle, Jomn. Math,,’ vol, 81, p. 62.
t  Wissonsehaft!. Ablandl.,’ vol: 1, p, 172,
§ * Quart. Journ. Math.,' vol. 17, p. 90.
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44 MR. A. B, BASSET ON THE MOTION OF

Throughout the present mvestlga.hun terms involving the squares and products of
the velocity will be neglecbed This is of course not strictly justifiable, unless the
velocity of the sphere is slow throughout the motion, If therefore, the velocity is
not slow the results obtained can only be regarded as a first approximation ; and a
second approximation might be obtained by substituting the values of the component
velacities hereafter obtained in the terms of the second order, and endeavouring to
integrate the resulting equations, I do not, however, propose to consider this point
in detail.

2. In the first place it will be convenient to show that the equations of 1mpulaive
motion of a viscous liquid are the same as those of ‘a perfect liquid.

The general equations of motion of a viscous liquid are

o { |
~—M+u:;;:+1!ilf+ wc-(-?—‘—x+——-—vv3-u=0,

with two similar equations, where » is the kinematic coeflicient of viscosity.

If we regard an impulsive force as the limit of a very large finite force which acts
for a very short time 7, and if we integrate the above equation between the limits
r and 0, all the integrals will vanish except those in which the quantity to be inte-
grated becomes infinite when r vanishes ; we thus obtain

Ipd-r-O

Putting ju pdr = w where = is the impulsive pressure at any point of the liquid,
we obtain

to— i, +

g dx

Loy

p(w~—u,)+ — =0, &, &c.,

.z

which are the same equations us those which determine the impulsive pressure at any
point of a perfect Liquid,

3. Let us now suppose that a sphere of radius ¢, is swrrounded by a viscous hquid
which is initially at rest, and let the sphere be constrained to move with umniform
velocity V, in a straight line. If the squares and prodicts of the velocity of the
liquid are neglected, Professor Srokes has shown that the current function ¢ must
satisfy the differential equation

L d - -
”(”_m)"‘=°’ Y € ).

where
e sin @ o

b= ut75 dﬂ(mmadﬂ)

and (», 8) are polar coordinates of a point referred to the centre of the aphere as
origin.
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Let R, ® be the vomponent velocities. of the liquid along and perpendicular to the
radiua vector ; then, if we assume that no blipping takes place at the surface of the
sphere, the surface conglitions are

. .._.!I_..1_ d.i -r ‘; ] k
R -y ui E a f?ﬂ ':.PDE 0 [ | 1 a [ » . - N L N (2)
_-_.-“"-I rli — !
A= — oy == — Vaind. . . . . . . . (3)

Also, at infinity R and © must both vi}niﬂh.
These equations can be satisfied by putting

b= (Y, + ¢)8in0, . . . R (1)

where @, and ¢, are tunctions of » and ¢, which respectively satisfy the equations

e 2' . | : |
f{,.ﬂl — “_,t'"l —— O 3 I - x . - a . . ] » ] ( 5 )
s T =y s (6)

The proper solution of (5) is y, = /(t)/r, which it will be convenient to write in the
form

Y, = :r-\/ﬂ{ X (@) exp. (—a*dwt)ela, . . . , . (7)

[ ”

~ where x (2) 1s an arbitrary function, which will hereafter be determined.
In order to obtain the solution of (6), let us put ¢, = re~*" dw/dr, where w is 4
function of 7 wlone ; substituting in (6), and integrating, we obtain

i = Acosk(r ~—a +,u),

where ¢ 15 the radius of the sphere and A and a are the constants of integration.
Whence a particular solution of (6) is

if e At
W, = A — {

f*r ?

m}é A(r—a+ a)

Integrating this with respect to A between the limits « and 0, and then changing A
into F(a) and integrating the result with respect to a berween the same limits, we

obtain -
VA B e 1O (r—a+ a¥
¥, = 24/ () er r P { 4t } d“‘I
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Performing the differentiation and then integrating by parts, we obtain

Y S IE TR
+ 3 ,\/:—: [F(u) oxp. { (r:::iﬂ;;i)!}:ln'

We shall presently show that it is possible to determine F(a), so that F(0) = 0,
and F(a)e™ = 0 when « = o ; hence the term in square brackets will vanish at both
limits, and we obtain

gin? @ a

y=", :}'{:x (a) exp. ( 4;) da -
- Eil;;& ,\/:; J’“ {F(_ﬁ) 4 F (u) } exp. { (r —:P:' #)E} da. . . (3)

We must now determine the functions y and F so as to satisfy the surface conditions
(2) and (3).
Equation (2) will be satisfied if

x(a) — F () — af" (a) =

Va'

w

(9)

Equntion (3) requires that

Val= — |} /\/m,I (@) exp. ( 4pr)du+§ ,\/ j' F(a) exp. (—'::thu
._H »\/ [ {F () 4 a F"(u)}duaxp ( 4p8)d¢;

Integruting the last term by parts, the preceding equation becomes

V=4 A/ }' (= x(«) + F(2) + aF (@) + @F" (a)} Exp( ::r)du, (10)

provided, {¥ (a) + «F' (a) } exp. ( — a?/4st) vanishes at both limits. This requires
that F (0) = F'(0) =0, und that F(a)e and F'(a)e* should each vanish when
o= co. When this is the case (10) will be satisfied if

—x(@)+F@ +aF (@ +aF@=2". . . . (1

Whence by (9)

" (u)'—"m
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and, therefore,

F(a) = "5% +Cat D,

The conditions that F (0) = F'(0) == 0 require that C = D = 0; whenen

| : )
F(a) = Rz{:;i-, x (o) = Ve ( 4 3aa + ﬂﬂ)

"

Also the preceding value of F(z) satisfies the conditions that F(a)e ', and F'(a)e™"

should each vanish when a = = ; whence all the conditions are satisfied, and we

ﬁmtlly obtain
Vasini g

¥
1*.‘/(.,”,( I (*J + Jna + ) oxXpP- ("" 41-'!) ffﬂ

AVa sin® @ [* /a? (r —a + a)f
7 L (54- r:) oxXp. { ot }da_ .. (12)

W= -

The first integral can be evaluated ; in the second put » — a + a = 2u,/(vt) and
we obtain

b = Vi ismr(ff" (Sut + 6a vt + rzﬂ)
Ar T
AVaain?
~ "l:: [ { (2u/ot — 1 4 @) 4 2ot — » + a} e du.  (18)

4. When t = 0 the second integral vanishes, whence the imitial value of  1a

Vat sin? 8

Y= e

il

which is the known value of ¢ in the case of a frictionless liquid, as ought to be the
CaHee,

When ¢ is very large, we may put { = o in the lower limit of the second integral,
which then

= — ‘W:;:—a]' {ﬂuﬂut + 20u,/(vt) + & (a2 — rﬂ)} e du
. ’m sin *¢ {30t + 6./ (1) + 8 8 (a? — 7"2)3:

W ht:ncu:
ar a

= 4 Va®sin? H(-— —_

.r
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This equation gives the value of  after a sufficient time has elapsed for the motion
to have become steady, and agrees with Professor Stoxus’s result.
5. Let v, be any solution of the partial differential equation

d. (. |
(b(ﬂ)utm‘ T

X = . ! - - - " . » v
Then, it v, = 0, f F(t =~ 1), dr, where F(r) 18 any arbitrary function which isg inde-
N

pendent of 7 and ¢, and doeés not become infintte between the limits, will also he a
solution of (14); for, substituting 10 (14), the right-hand side becomes

F(0)s, + f

()

i R | - ! N “‘I'T
F(1 = v)e, dr = F(t)o, + [ F(t = 1) " ddr
()

T

f
= ¢ (f) [ F(e =, dn
it v, = 0.

6. The second expression on the right-hand side of (13) is the value of i, 5in? @ ; and
it is easily seen that this expression vanishes when + = 0. Hence it follows that the
expression which ia obtained from (13) by changing ¢ wnto 7 and V into F'(t — 7) dr,
and integrating the result from ¢ to 0, 18 also a solution of (1). Now, if F(0) = 0, it
will be found m substituting the above-mentioned expressions in (2) and (3) that F(¢)
is the veloeity of the sphere, supposing it to have started from rest ; hence this expres-
sion grives the current funetion due to the motion of a spheve which hags started from
rest, and whieh 13 moving with variable velocity F(r).

In order to obtain the equation of motion of the sphere, we must caleulate the
resistance due to the hquid ; but in doing this we may begin by supposing the velocity
to be uniform, and perform the above-mentioned operation at a later stage of the
Process.

It the mmpressed force s a constant foree, such as gravity, which acts in the direction

of motion of the sphere, and Z i3 the vesistance due to the liquid, it can be shown, as
in Professor SToRES's paper, that

o d .tl oy *
Z = zmzj (pﬁ cos @ — p :;; S1n” 9) s @ dé,
” C it
and that
dy A \
g = psin g E’%:* — gpasin 0,

where p 18 the density of the liquid; also, since

in0d0 = — A[ win®0?
L P cos @sin 0df = H'u sin’ § - g d8,
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wE Ubﬁﬂill

Z = — wpa dtr( d’h + 21}:,) sin®ddf 4 M’y
=__.___.(f_‘h )+M’.

at i\ - dr

where M7 is the mass of the liquid displaced. Now, if V were. constant, we should

abtain from (13),
() (':EI)' == — V(gh't -+ 3 /\/;: -+ %H‘E)!

and
. _ Iut u
(¥.). = 'W“(ﬂ" + »\/ w),
whencee
( M :.::%)ﬂ -V ( gt + 00 /% 4 ﬁul).

We must now change 7 into r, 'V into ¥ (t — T) d 7, and integrate the result with
respect to ¢ from ¢ to 0, aud we obtain

r M d J— I" k r T,
= o | P~ T}(gw + Yar ,\/E)dr + M 4 MYy,

andd the cquation of motion of the splicre s

WY R7/ r

H

(M 4 IW)r 4 1™t — f)( v '\/:)"'T*: (M — M)y (1)

lategrating the definite integral by parts, and remembering that F(0) = 0, the

result s
(B = (b st a/l) dn
&

and, differentiating with respect to 1, (15) becowes

™

PR\ & o L — , .
(M + M) ) + 2,2 {W+ t“ -\/ 'pf ]:-T(;t,/i-l) cf'r} = (M—=M)y. (16)
Let o be the density of the sphere, and let

(¢ —ply . Gp . _ i,
o+ ip =/ u"'(.fﬂ"l'p) =4, A= by, .(h)

MDOCCLXXX VI --- A, ]
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then (16) becames | PG B
0+ Av b x/;.'-f*;;;' dr =/ (18)

This is the equation of motion of the sphere, from which F (f) or » must be

dletermined.
7. Up to the present time we have-supposed: the motion to have commenced from

rest, 8o that F (0) = 0. Let us siow suppose that the sphere was initially projected
with velncity V. TIn order to obtain the equation of motion in this case we may
divide the tine, ¢, into two intervals, 1 and ¢ — k&, where A is o' very small quantity,
which ultimately vanishes.  During the first interval® let the sphere move from rest
nider the action of, gravity and a very large constant force, which is equal to

(M 4 AM)N, and then let the lnrga force cease to act,  This force must be such as to
produce a velocity, ¥V, at the end of the interval, A, whence we must have V = XA,

r = Xt: and, therefore, ¢ = \!, h.  Clanging f into /4 X n (18), multlplymg by

¥, und integrating between the limits ¢ and 0, we obtain

ez —he \f ! [mf & F(n —1)° +[\e-¢z:¢+jj:¢~;t:;. L. (19)

Now F (7} is composed of two parts @ a lnige part which depends upon X, and which
% cqual to VA and anether part which depends upon £, and which we shall conti
to denote by F'(6).  -Hence (19) may be written

X ! ¥ of
L al— (-E“ : __1) + (E” — 1) — ki /\/ ::!u ol e L]:‘ (0 — 7) e v':;'
- fts \/;fi e x(w)ln, . . . . . . . . (20)

W herte
v Vilr

="
Now x (#) depends on X, and 4herefore vianshes when u > A, When v < A,
x(n) = 2Vud I ;
therefore

! ‘ E'v"
‘ ey (1) du = I ) we du = 0, when A = 0.
Ju .

Henee, in the Jimit when A vanishes, (20) becomes

r= Ve + ::(l — ) kr.rv\/"- rche L =M= (1 — r) VAT (21)

Tl

The following pracedure, saggented in w Report upon this paper, has been subktituted for the

remaimder ol this seetion ns opriginally written.
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and the value of the acceleration 1s

j Y ] * — At ven ¥ '{Z : = i {1 - u} LV d‘i‘ %
v= — Ve " 4 fe —-.{u.,\/ “;{fzf'z.erL”:ai e | (?z--*r)‘-’--/-_‘-_- (22)

B. It seems almost hopeless to attempt to determine the complete value of F from
the preceding equutions, but, in the case of many liquids; v is a small quantity, and
(22) and (23) may then be solved by the method of succéssive approximation. For
u first approximation

pe= P () = fe,

whenee
3 'E . ! AT *f,r

I (23)

[l (¢ o T :(r

-\ T f[

The integral on the right hand side of (23) cunnot be evalunted in finito terms, and
we shall denote it by ¢ (7). Putting r = ty, we obtain

! f'fﬁfﬁ,}u
_— e - &2,
0= I.Lm/ A y) S (24)
— v/rj‘ ﬁm-lrm"i l] v ;’u‘
“"]Il'rt'
B LY TR B
H, = ¥t
Nu“‘
' | N
Al w — v
jll' f{ﬂ x!
Theretore

el theretore

o=l e (AT e

When s very Lirge we may replace (1 — €=*)/A by (M), and we shall obtain

¢ (1) = - { + % v "."}

y (A"
. |
Ak /(=1

which shows that ¢ (¢) = 0 where t = =
Another expression for ¢ {¢) muy be obtuined in the form of a series, for

o [ ety Y, (231 (= Y {2A)
t — A I E " m :-I':'! ('! o - TP P L ¥
Pll) = ¢ ‘y "’z{l 1.3 T 1 %5 “'1.;:,*.(?“+U+'“}’ (26)
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by successive integration by parts. The above series is convergent for all values of ¢,
and i zero when ¢ = oo,
For a second approximation, (22) gives

v=F () = fe=* — fla ;\/::'::‘ MGt —u)du, . . . (27)
and .
r= Ve 4 L1 = ) = fla pSE [l g —w)de. . . ()
L['!tl
o —n 4
x (1) = fft.[ "¢ (t —n) de, . . . . . . . (29)

anvd (27) becomes

F'(t) = fe=" — fha \/ = x ).

Whence to a third approximation

o N‘*AE“M +ﬂﬂ-m _"'f"ﬂ ,\/ x( )+f}» 2y o f ihl j': u—MI‘—n!x(" — ‘I“) \/T‘

w o
Lt"‘t.

tp(:)—fwjﬁ"f‘;) L (80)

atul the last equation becomes

;. —_— \.hiqu_imj:sﬂm “EJ%U ’\/ (!) +_ff3ﬂﬂp::‘j’ Hl’l(t— ﬂ)d“, i o ) (3[)

m

anil

f t Ry 11 :
= (1 =€) 4 Ve — fle \/_:Lf““tﬁ(‘ — u) du+ﬂ_n: FLEMW'(‘ — u)du. (32)

We must now express all the ubove mtEgmla in terms of ¢(t). From (29) we
abtain

x(t)= 2 f}wtww(u) du
= ¢ (t) =\ ['rw-qb(u) du

= ¢ (£) = A= j i j’ v



by (24). Chongi ng the order of integration, the last integral

ﬂf er] ehrji;: "r‘m(;;f—\/f) dr
= f“{ (1) (t + Eli) m\;\"},

x ()= =M () + 1.

whence

Substituting this value of .x (¢) in (30), we ohtain

'Hl')mj:(&w-hf}tfl( ) - :“ ”+r /\/‘“:T*Trf'r

Now |
r i el | -‘-r r E"'"‘“ e
- - = | dr
y v {f - T) & u\,r‘f“t‘“f){f"“”
. r } r €~ A gy
= 1Y s - e — )
!
— '!Tj e ey = (1w =),
q A
‘.Lrﬁn
Tdﬁ("l‘}ﬂ’f j I we = A ol -
.Lf(!wﬂ dr uﬁ{{t-—'ﬂ(fmu)}
f rf‘!"
e d j
L ‘ \/[U “~ TRY = W)}
r
= T‘ At 4 w)e=*dlu
vy
T . 3 s
= ;=24 (1 =),
ﬂIlri
t < |
I «/! Tr.frmémf,
o —
wlienee
Y1) = mte™ M.
Aguin,

: ’
I € (e )y == m"“J (t— u)du
t ‘ i
= intle™™,

whenee (A1) and (32) finally become

(13)

(34)

(35)

(36)

(37)

(38)
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= f = Vo — fha A S L] (4 = MIO) + v/t } +SBante (1~ e (99)
=11~ r“} + Ve —fka A 2 {(r, + )80 = % } + 3SRty (40)

These equations determine to a third approximation the values of the nceeleration
and velocity of the sphere, when it is projected vertically downwards with velocity,
V, and allowed to descend under the action of gravity. If the sphere is nscending
the sign of ¢ must be reversed. , ,

If no forces are in action we must put /== 0, and the preceding equations give the
values of » and v to a first approximation only ; but, on referring to (21) and (22), it
will be seen that the values of these quantities to a third approxnnation may be
obtained in tlns viiss from (39) and (40) by changing f into — VA und expunging the
terma fe=™ and A7 (1 = ™). We thus obtain, since A = kv,

b= e Vive-* ‘"‘“"""" ;=M e()+ St} = Vatlie (1 = N),  (41)

r= Ve 4 Yk {(t«l« :-}x)cﬁ(t)ml:‘} - AV e, L L (42)

9. It appears from the preceding equations that the suoccessive terms are multiplied
by some power of L as well as of ». 1t X is not a very large quantity, and the velocity
of the sphere is not very great, the foregoing cquutions may be expected to give fairly
correct results 3 but if L is o very large quantity, it may happen that, notwithstanding
the smullness of », kv 1ay be so lurge that sume of the terms neglected may be of
eqqiad or grerter importance than those vetained,  Now, from (17), k== 9p(20+ p) la™%;
if, therefore, the sphiere is considerably denser than the liquid, & will be siall provided
a be not very small; bnt if the sphore be considerably less dense than the liquid, &
will approximate towards the limit 9¢~%, and this will be very large if « be small, and kv
may therefore he .Imwa On the other hand, it should he noticed that when kv or \ is

large the quantitivs €=* and ¢ () diminish with great rapidity, and it is therefore by
no neuns llll[)ﬂﬁm'}lﬁ that the formulw mny give a fairly nccurate pepresentation of the

imotion even in this case,

All that we can therefore safely infer is this, that in the case of a sphere ascending
or descending in a liquid whose kinewatic coefficient of viscosity is small compared
with the radius of the sphere (nll quantities being of course referred to the same units),
the formulw would give approximately correct results, provided the velocity of the
sphere were not tov great. But, in the case of amall bodies descending in a highly
viscous liquid, it is possible that the motion represented by the formule may be very
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different from the actual motion ; and if this eboulit tarn out mmmmm
solution of (18) applicable to this. mmmmtha btained by some-different metho
Equation (39) shows that after a very leng time bas elapsed the boosleration
vanishes, and the motion becomes ultimately steady; in. other. words, the ascelerative
due to gravity is counterbalanced by the retardution dire o0 the: viscosity of ‘the liguid.
When this state of things has been reached, the torniinal velocity of the sphere is

= {=2 (=)

e \p

This agrees with Professor Svores's reslt, who applies it to show that the viscosity
of the aie iy sufficient to geeount for the suspension of the clouds. |

10, We shull now consider the motion of n sphere which is surrounded by an
infiuite Jiquid, und which'is rotating about a fm&i dinmeter.

We shall begin by supposing that the angulur velocity of the ephere is uniform
and equil to &, and shull endeavour to obtnin an expmmn for the mnpom1:
velocity of the liquid in a plane lmr]mmllml.w to the axis of rotation, on the supposi-
tion thidt no slipping takes plice at the surfuce of the nphem

Aasuming thut the metion of the quuid is #lable, it is eaxily acen- that none of the
(quantities can be fanetions of ¢, where 7, 8,and ¢ are polar coordinates referred to the
ventre of the sphere as origin. I, therefore, we neglect squares and products of thie
velpgities, the component velocity; ¢, of the liquid, perpendiculur to uny plane con-
taining the axis of rotution, is determined by the equation

et Pt Dl 1 Jd LA
=Y { o f' or + rt win @8 {“"“ '";m) = R gin? a}i

anel i i this eguation we put ¢ = rsin &, where ¢ i3 o function of » und ¢ only, the
vitation fur s
e Ry or | .
:’;":+ . : t‘i — F Jf » = r " » . ] [ » (43)

r alr

The value of the tangential stress per unit of area which opposes the motion uf the
spliere is .

N I ¢y
= "‘”(ramimp dr " r)

where R is the radial velocity ; but, since R is not a function of ¢, the valye of this
wtress depends solely on that of . Now Professor Sroxus has pointed out that
unluss the motion of the sphere is exeeedingly slow, the motion of the hquid will not
tuke place in planes pcr}mntlmulm* to the axis of rotation, but'the velocity of every
particle will have a component in the pluuc containing the particle and this axis, But
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gince this component does not produce any effect, on the motion of the sphere, which it
I8 our object to determine, we may confine our attention solely to the calculation of .
In addition to (43), v must satisfy the conditions :
(i.) At the surface of the sphere v = aw for all values of ¢,
(ii.) When t =0, v == 0 for all values of » greater than a, the radius of the sphere.

Let v = Re~** where R is a function of R-alone ; substituting in (48), we obtain

B 24RO Ay
an t o T B EE=0,
the solution of which is

d [} -
R Am{;mh(r'wuqu u)}.

whetee

or

of [ gt -
t*mA“ { a’-.-mmmh{r wu+u.)}~

Integrating this with respect to A between the limits « and 0, and then changing
A iuto F(a) and iutegrating the result with respect to a between the same limits, we

ulstain
o wd |7 | (r —# + af
r=44/7 ir o |, F(0) exp. {“"‘ W }d“‘*

I*erforming the ditferentintion and then integrating by parts, we shall obtain

| a [ [ Fix) “ P 2 |
= A L{ .+ b (m}} expr. {mf .;:‘h «) }.rfﬁ, . (43A)

providoed F(G) = 0 and F(a)e= == 0 when a == o,
The surface condition (1.) will be sutisfied if

F(h) + uF'(a) = — 2,

"
whene

Fla) = = """ (1 = =),

the constant of integration being determined so that F(0) == 0; this value of ¥(«)
ulso satisties the condition that F{a)e* == 0 when a = . We thevefore obtain

»  alwain @ it a\ L. | (9 .we g .2}
Y= e L (1= 5) e | exp. { - e TN (7
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Putting » — a 4 a == 2u,/(vt) this becomes

oo P mSING { - 4 ( 1 -—E) exy. ('- AL ﬂ)} “¥du.  (45)

F\/ i r o
.a -"fr”

If » >« it follows that v = 0 when £ = 0. When r=a and ¢ = 0 the lower
limit of the definite integral (45) becomes indeterminate; but since, in this case, we
are to have v’ = awsin §, it follows that if we put k == ¢ — @ the quantities kand ¢
must vanish in such a manner that when & = 0 and ¢ == 0, 1/2 \/(vt) = 0.

When t = o we obtain

e (1

T

This equation gives the value of v after a sufficient time has elapsed for the motion
to have become stendy, and agrees with Professor STOKES'S result.
11. Since the tungeutiul stress peér unit of aren which opposes the metion of the

sphere in
T = (1)

(e omomd BN wntad
(i = «— Jyvon Ldr(r‘) sin® 8 d0,

the opposing conpsle bs

= — dgppn® ': ( ) rmll" AP,
. " s ad v
i e oy (r).;

If, therefore, the spliere he acted upon by a couple, N', ita equation of motion will

b
ﬁ-.{rﬂr'rﬁ "'l"‘ l; —_ N'!,,
llr :
g d f/r -
o Yy (J")I-F N* A (4')
wlhiere

N = 3pN’/§h,

When the motion of the sphere commences from rest the value of v or v' cosec & will
be obtained from (45) by changing ¢ into 7, w into F' (¢ = r)dr, and integrating the
result with réspect to r from ¢ to 0, where F (¢) is the variable angnlar vplamty of the
spheve,

MINCCLXXX VI —A,
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Now,
. [\ ldvy o
NP | _.. | E " — e — -":I-. "
. 'Z-" . I’i‘a'.‘ R -‘,-?.ﬁ d_'j ﬂfﬂ' .'

Hénce, if w were uniform we should have

o af

e\ 2 -
(d:), = =— 2w + ﬁj: exp. (— 2u Jutfﬂ'M' tﬁ) du — v(m;“
Putting %« 4 o/ (st)a == 8, the definite integral

ums gt -‘.ﬂrmu e Jﬂ

g {3/’: \/(") 3+ (vt .. }

ﬂ““

(%“‘mmq_.tt‘-/ﬂm”l)r I

2n?

if vt be small ; whence

’ ﬂ\/'lr %% V"ﬂrﬂ

Changing ¢ into r, and @ into ¥' (¢ — ¢) dt, (47) becomes

g 2 (re=n (V=" ket A/ D =N, (ag)

ﬁp T e \ ‘o

Patting

{4R) hecomes

+ } kn "ﬂﬁ"(mf#wwuuﬂ (49)

Now we have supposed the motion to have commenced from lveat under the action
of the couple N'; but if the sphere bad initially been set in rotation with angular
velocity €, and then left to itself, it can be shown in the same mamer ag in §7 that
the equation of motion would be

&+nm+”ﬂ[’n*'(fw)(,/«-mm ./w)m-n-;m,\/ [F’(s_f)wwn '(m-)



A BPHERE IN A VISCOUS LIQUID. 549
where F (0) = 0. Putting 8(¢) for the lagt two terms, and integrating, we. obtain

o= e = Py, . (81)

@ == = ADe™H o ‘:ij- “Alf - “’ﬂ(u)dw e e e e . (5

For a firat approximation we have

o= 0¢=Y,  dz= — \Nle™M == F ().

Whence, if ¢, x, and ¢ have the same meanings as in'§8, a second approximation
gives .
mn '

Ma O

w = {le= 4 2 /%

“"‘“”"“H)ﬂu N 1)

And a third approximation gives

k
6 = — bve~™ ‘:?: x(0)+ .'.':5;; ul,duf eemn/ran

R s, 69

Ay
ij‘f: I =AU~ o) 1},(:{)([& by rrd’uf A= Sy dr

L retwt '
- 4; Lﬁ‘”"“"a}c(u)du. . . (56)

w 2= e o

Now we huve shown in §8 that

[ererg@du=g(t+ )%

I; du Ee‘“‘““” rdr = I: dr ﬁt“"“*‘“” /7du
= e[ e (ty/r=)dr
== a{#O="{+ 5 0).

Aud the value of the fast integral in (56) is given by.(88); whence
I 2
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=aes S a0+ ) -]

At 4

3/ N oma e A -
+ 4“‘\"}';?;{ 't ‘f"( )(‘*A-' .\.)} — § Avem”, . (57)

which determines the value of the m‘lgulﬂr velocity as far as #h,

12, Hermbovrz and Prorrowski discovered from their experiments that in the case
of muany Liipuids slipping takes plice at the surfuce of the solid; when this happens,
the surface condition is

ﬁ(t*mum)mup;'f. ! (:) e (58)

de

where B 18 the coethoient of shding friction.  Putting £ = vpB™'. we obtuin from
[ ’

(":3#\) , . S .;l-.( ) ‘}]”‘( ).‘ .
A __"l/\/-:r b a =i {a o o«
I“’r (nr)nr_ E pt ju { Th + H"lt r th* ( 414) {{ﬂ'
1 3 (1) .
T /\/yf L { + I (ﬂ)} """ eX] <— 41!‘) o
l 2 is ﬂﬂ |
T 2y /\/H( L (1' + + ) exp. (— 4!’#’) tex

provided Fo)= F (0) =0, and F{a)e™ and F'(a)e™* are zero when a= .
Enation (58) will be satistied 1if

Fe

SUEHIST

A . RLTRI™
K + ; )b -_— b

hrs T, v/,

thie solution ot wlhiel s
AITRFN

! T — ; Al Al
! {3+ n)'rr+ Ve 4 Ber,

where p and f L thie roots of the t:*tlm.tt,iun

.J:*-‘+(f+ )¢+( :;'}1)*"7'"”' Y 110

The roots of (59) will be real f « >% that 1s, if « > vp/B. Now, it there 18 no
shpping, 8 will be infinite, and therefore, when there is comparatively little slipping,
£ will be large, and this relation will be satistied unless a is small or v is lurge ; on
the other hand, if there were no friction between the surface of the sphere and the
hiquid, 8 woulld be zero, but it seemns improbable that uny liquid exists which possesses
the property of viscosity with regured to the internal motion of its particles, and which
nt the same tine 1s incapable of exerting any nction in the nature of friction aguainst
any surfaces with which 1t is in contact.  If therefore 8 were zero, » would probably
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also be zero, and the hquid would be frictionless. We shall therefore assume that the
roots of (59) are real. .

The constants A and B must be determined from the condition F (0) = F' (0) = 0,
whence

P = B {1 o)

(b 4+ a} 7 Py
b 2” fl.’ put &
Fa)= — s (¢ €"),

also this value of F satisties the conditions that F(a)e™, and F*(a) e should
vanish when @ = = : whence the value of v 18

o Mwsind o’ ye'* — pe™ )
C T ) L [rm-w:'("" o

e —e*) [ (r—eta)
+ . (Iﬁ:ﬁ] ex. { i } et (60)

13. We shall kastly consider the motion of liquid contained within a aphere, which
% rotating about a fixed diameter, when there is no slipping, und when the angulur
velocity is uniform,

In this case » must satisfv the differential equation (43), and also the condition (3.)
of $10; but (il.) becomes ¢ == 0 when ¢ = 0 for all values of r < : also we have a
third condition, viz., that the velocity must be finite at the centre of the sphere,

A particular solution of (43), subject to the condition of finiteness at the origin, 13

wr o | N (7 = o\ | * {'r'_-l:_ﬂt}i}
r= 1A ,\/ﬂ . r[mp.{ i } m.p.{ wr 1)

whetee 1 poand ¢ are any 1'|t.|;ntititiuﬂ which ure independent of » and ¢, a solution af

(43) is | .
=4 AT o F@[en { =TT = e { =T e

of 1
T dr o

! dh] F(a) e * {cos A (r — a) — cos M{7 + a)} da.

It we put p=«, g = 0, F (a) = a, the double integral when ¢ = 0 is equal to » by
Fourier's theorem, for all values of » between ¢ and 0. If weput p =w,¢g=aq,
the integral when ¢ = 0 is zero for all valnes of r which do not lie betvreen @ and .
The solution of the problem is therefore contained in the formula

, ,.,ﬂ; a )t , i
o=t/ Al (R @ o {5} - o] ST I
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where A is a constant, which, together with the function F (), must be determined
g0 as to satisfy the conditions of the problem.

14. Though I am convinced: that a solution of the problem exists in the form of a
definite integral, I have not suceceded in obtaining it; and therefore subjoin a
solution of a different character.

Let S(r) denote the spherical funetion d(r~!sin7)/dr; then a solution of (43),
subject to the condition of finiteness at the origin, 18

v=3A ™S Hfwa, . . . . . . . . {62)
when » =a, v =wa for all values of ¢, whence
S(Aa)=0, . . . . . . . . . . (63)

and the diffevent values of A are the roots of (63).
Intially » = 0, whence
wi = = %A, (),

Let A and u be ditterent roots of (63), and let. T = 8 (ur), then, since S(Ar) satisties
the equation |
BS 248 48

— —

A rodr o pd

4 A== 0,
we obtatn,

W =) [ St dr 4 [P} = e8] =0, (64)

T 4
() I'i r {}

L —

and since by (63), ¥ and T both vanish where » = «, we obtain

fl

(STrtdr=0, . . . . . . . . . . (65

provided A and p are different. To find the value of the integral where A = p, let
p = A -+ d\; then from (64)

N = U,

2 “Qrae g, o[ o B _ dSdS]
}"‘”‘LS' R A N

or,

[8%%dr = 4a’8%(Na), . . . . . . . . (66)

where the accents denote differentiation with respect to Ae; whence

@i [¢ d sin Ar
— ,13 A, iR ()mr,) —_— [ e commmmree (gt
A udi' r
i
= - #ln Aft,
A
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Therefore

aniel
2w < e~ At fain Ao —Aa) S (Ar)
U= = B e e
fl AS2(a)

whence the velocity of the liquid, which is equal to v 8in 6, can be found.

When the angular velocity is variable, the value of the retarding couple, and the
equation of motion of the sphere, can be obtuined by a process aoulogous to that
employed in §11.

[March 10th, 1888, —Since this paper was read, a paper has been published in the

Quarterly Journal of Mathematics,'® by Mr. WHiTEHEAD, In which he attempts to
develope a method of obtaiming approximate solutions of problems relating to the
motion of a viseous liquid, when the terms involving the squares and products of the
velncities are retained ; and he applies his method (see p. 90) to obtain expressions
fur the components 72 the plane passing through the axis of rotation, of the velocity
of n viscous liquid, which surrounds a sphere which is rotating about a fixed diameter,
when the motion has liecome steady. Tt will be observed, however, that the expressions
for these components contain the coeflicient of viscosity as a factor in the denominatar,
and therefore become infinite when the liquid is frictionless. It would therefore
appear that the method of approximation adopted 18 inapplicable to the problem
considered, |

* Vol 23, p. V5





