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Abstract

The mathematical modelling of radiation processes, based on experimental data of modern physics and traditional ap-
proaches of dimension theory, thermodynamics and gas dynamics is considered. Dimensional analysis allows predicting
important characteristics of radiation processes (mass of particles-bosons radiation, the magnitude of the radiation pres-
sure, the characteristic linear dimensions), and also indicate the possibility of superluminal motion (without violating the
principle of causality). Methods of thermodynamics lead to the refined modelling of equilibrium radiation, the equation of
state of radiation protection, determine the heat capacity and the value of radiation pressure in the source. Gas dynamics
approaches to formulate a closed system is thermodynamically consistent conservation laws for radiation heat-conducting
gas. In this direction we present one-velocity two-temperature and one-temperature approximation. Demonstrate some
practical applications of the methods of modelling.

Keywords: Radiation mathematical physics, Dimensional analysis, Thermodynamically compatible laws, Hidden mass
boson, Superluminal motions

1. Introduction

The experimental achievements in physics of the second half of XX century point to the need to revisit the impact of
radiation effects on the course of thermal processes in nature and in technical devices. To evaluate these radiation effects
we will rely on the numerous experimental data of modern physics, as well as the theoretical basis of dimensional anal-
yses, phenomenological thermodynamics, statistical physics and gas dynamics. The first important experimental result
of modern physics for us is the discovery of Cosmic Microwave Background Radiation (CMBR). The results of astro-
physics research indicated that the frequency distribution of background radiation intensity corresponds to the frequency
distribution of radiation intensity of the black body with the temperature T0 = 2.735 K (Penzias & Wilson, 1965; Smoot,
1978). The second significant achievement is the discovery of Dark Matter (DM), which is also called “the hidden mass
of the Universe”. About 96% of whole matter in the Universe consists of DM. The baryon substance accounts to only 4%.
Recent measurements indicate that the actual average density of the Universe is very close to the critical density value
ρ0 ≈ 10−26 kg/m3 (symposium Dark Matter, 2003; Chernin, 2008). There were a large number attempts to describe the
nature of DM, but no of them had been successful yet (Moskowitz, 2006; Mavromatos, 2011).

In connection with these two experimental facts, note the following important fact. Before the discovery of a finite
temperature to the CMBR in the physical vacuum of outer space it was assumed that the temperature in space T = 0 and
particles - photons naturally have zero rest mass. The photons acquires mass and energy only while they were moving
with the speed of light (and no other), and the speed of light - the maximum allowable speed of movement. Thus, there
was no contradiction between the zero temperature of space and zero rest mass of photons. However, the discovery in
outer space of the finite temperature T0 = 2.735 K automatically from the dimensional analysis leads to a new dimension
characteristic value, namely, the finite rest mass of cosmic space particles-Hidden Mass Boson (HMB)

m0 ∼ kT0/c2
0 ,

where k - the Boltzmann constant, making sense the gas constant per particle.

The non-zero temperature characterizes the hidden kinetic energy of particles with also a non-zero mass. Therefore,
the T0 = 2.735 K in space points to the need to rethink established views on the photon mass as the carrier of an
electromagnetic radiation. In this paper we attempt to get such a rethinking.

In the next part of our paper we fulfils the analysis of the mentioned experimental data with using of physics dimensional
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theory π-theorem (Buckingham, 1914) and dimensionless π parameters. The main result of this analysis is the presence
in free physical space, filled equilibrium radiation at the temperature T0 = 2.735 K, the material medium with the
particle HMB of non-zero mass m = 5.6 · 10−40 kg. This medium might be identified with the classic ether, or the mass
“photon” gas, or the DM medium. With our point of view these different media may seeing as the same medium. By
that the week perturbation velocity in this medium should be proportional to the square root from its temperature. This
fact withdraws the limitation on week propagation perturbations velocity and allows the superluminal motion (without
violation of the causality principle). Here relevantly one gives the analogy with the classic gas dynamics, allowing the
motion with supercritical (supersonic) velocities. The dimensional theory also allows to estimate the critical pressure
value and the critical frequency of the Universe. For the dimensional analysis we use additional the characteristic velocity
c0 = 2.998 · 108 m/c and the values of three constants: the Boltzmann constant k = 1.38 · 10−23 kg/(m/s)2/K, the
gravitational constant G = 6.67 · 10−11 N · m2/kg2 and the Planck constant h = 6.63 · 10−34 J · s.

Further in the third part of the papers there are presented a few items of statistical physics, phenomenological thermo-
dynamics and gas dynamics for radiation medium properties. The statistical physics methods allows to consider typical
properties of mass boson gas (the radiation medium) on the basis of the Bose-Einstein statistics. In particular, for this
medium the Bose condensation state is predicted. The thermodynamics methods lead to updated modelling of an equilib-
rium radiation, the state equation of radiation medium, the specific heat parameters and the radiation pressure value in a
source. In the forth part a complete thermodynamically compatible system of conservation laws is written for two-fluid
radiation medium, consisting from a original (baryon) gas and radiation component. It is considered one velocity two
temperature and one temperature (equilibrium) approximations. In the final fifth part of this article it is described the
practice applications for air breathing engine simulation.

2. Dimensional Analysis

Executed dimensional analysis is based on measured values of the following quantities: the light speed c0 = 2.998 ·
108 m/s, the CMBR temperature T0 = 2.735 K and the assessment of the critical density of the Universe ρ0 ∼
10−26 kg/m3. It also uses three well-known constants: the Boltzmann constant k = 1.38 · 10−23 kg · (m/s)2/K, the
gravitational constant G = 6.67 · 10−11 Hm2/kg2 and the Planck constant h = 6.63 · 10−34 J · s. Applying π-theorem
(Buckingham, 1914), we construct the dimensionless parameters π and physically associated meaningful relationships.
The Buckingham theorem is a key theorem in dimensional analysis (see, for examples, Sedov, 1967; Birhoff, 1960). It is
a formalization of Rayleigh’s method of dimensional analysis,which expresses a functional relationship of same variables
in the form of an exponential equation. The simplest dimensionless parameter π1, linking pressure, density and velocity,
is written as

π1 =
p
ρc2 ∼ 1

and allows an assessment of the “critical” pressure value

p0 ∼ ρ0c2
0 = 10−9 Pa.

In the case of an ideal “photon” gas with adiabatic constant κ = 4/3 the perturbations velocity is defined as

c2
0 = κ

p0

ρ0

and then we get p0 = 1.4 · 10−9 Pa. It should be emphasized that this positive value p0 can be interpreted as “critical”
pressure of the Universe, determined by means of dimensional analysis in terms of its critical density ρ0. We specifically
focus on this fact to point out a fundamental difference from the negative pressure of the Universe (Chernin, 2008), which
is associated with the phantom dark energy that may influence the effect of “accelerating” expansion of the Universe. A
natural explanation for the apparent accelerating expansion of the Universe and a few other important items follow from
the consideration of the dimensionless parameter π2

π2 =
kT
mc2 ∼ 1 ,

leading to the estimation of the particle mass m0 of the medium with the temperature T0 and the disturbance propagation
velocity c0

m0 ∼
kT0

c2
0

= 4.25 · 10−40 kg.

An important conclusion of the analysis the parameter π2 is the directly proportionality of the velocity c0 to the square root
of temperature c0 ∼

√
T0. In this connection we would like to get two remarks. The first is the possibility of a superluminal
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speed for disturbances in physical vacuum by T > T0. In our case the limitation on week propagation perturbations
velocity is withdraw and the superluminal motion (without violation of the causality principle) is allowed. Here relevantly
one gives the analogy with the classic gas dynamics, which allows the motion with supercritical (supersonic) velocities.
The second remark is concerned the apparent accelerating expansion of the Universe. The Universe in the early time
periods was hotter, had a higher temperature T0 and therefore had a higher value c0. This fact naturally explains the
observed luminosity weak effect of distant supernovae, awarded by the Nobel Prize for Physics in 2011 (as the discovery
of “accelerating” expansion of the Universe).

A more accurate assessment for m0 (Ivanov, 1998, 2011) gives

m0 = 5.6 · 10−40 kg.

It should be noted that the combination of dimensionless parameters π1 and π2 leads to a state equation of an ideal gas.
We write the dimensionless parameter

π3 =
π1

π2
=

p
nkT

∼ 1,

where n = NA/m - the concentration of particles.

Further the dimensional analysis will be conducted, relying additionally on two parameters. Parameter π4 is written as

π4 =
Gρ
ω2 ∼ 1

allows us to introduce the characteristic gravitational frequency ω0, the characteristic time period t0 = 1/ω0 and the
characteristic linear dimension L0 = c0t0 of our Universe

ω0 ∼
√

Gρ0 = 0.82 · 10−18 1/s

The value of the gravitational frequency is an analog of the plasma frequency, which characterizes the electric displace-
ment of the negative charge from a positively charged layer. The exact value ω0 is written (by an analogy with the
definition of the plasma frequency) with a coefficient of proportionality

√
4π, i.e. ω0 =

√
4π ·Gρ0.

We also consider the dimensionless fifth parameter

π5 =
hc
kT l
∼ 1

allowing to produce an assessment of the characteristic length l0 ∼ hc0
kT0
= 5.3 · 10−3 m. This quantity can be interpreted as

estimation of the mean free path of particles for the physical vacuum with temperature T0.

3. Elements of Thermodynamics and Statistical Mechanics of Radiation Medium

An interesting result of dimensional analysis is the presence of particles with mass m0 in a free radiating space (the
physical vacuum) with the equilibrium temperature T0 and the disturbance velocity c0. The zero law of thermodynamics
allows to introduce a temperature as the state parameter. The temperature T0=2.735 characterizes of cosmic background
microwave equilibrium radiation state. Using a simple gas kinetic approach we can find more accurate value of the mass
of these particles. The averaged kinetic energy of random motion of these particles is

E =
m0 · v2

av

2
=

3
2

kT0 = m0
3
2

Rg

m0

T0

NA
=

9
8

m0c2
0 ,

where the k = Rg/NA – Boltzmann constant, Rg – the universal gas constant, NA – the Avogadro’s number. From this
relation we obtain

m0 =
4
3

kT0

c2
0

= 5.6 · 10−40 kg � 3 · 10−4 eV.

We calculate the gas constant R f = Rg/m0NA and specific heat capacity cv and cp in the assumption of ideal gas with
adiabatic index κ = cp/cv = 4/3. This adiabatic index of radiation medium is accurate known value (Pai Shin-I, 1966;
Zeldovich & Raizer, 1966). We have:

R f =
k

m0
= 0.25 · 1017 J/K · kg,

cv = 0.75 · 1017 J/kg · K,
cp = cv + R f = 1 · 1017 J/K · kg.
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Further, following the traditional thermodynamics of ideal gas for radiation medium, we can write the classical state
equation

p = ρR f T

or
p = (κ − 1)ρe,

where e = cvT -the specific internal energy.

An important next step is to postulate the structure of radiation particles, which allows to explain the large number of
effects and phenomena observed in the physical vacuum. Following (Ivanov, 1998, 2011), we consider a whole electrically
neutral particle in the form of a dipole consisting of two parts with positive and negative charge equalled to about 5 ·10−29

Coulomb. This value follows from the estimation of mass and charge for an electron and a proton (Ivanov, 1998, 2011).
Thus, we actually introduce the new mass medium of bosons (HMB) and can apply to its analysis well developed methods
of statistical mechanics and thermodynamics.

Let us explain in more detail, why the mass particle radiation of the physical vacuum is taken in our analysis in the form
of the dipole, called hereafter by the hidden mass boson. First, in this case the issue of physical vacuum polarization
is extremely clear. In external electric field orientation of the HMBs takes on power lines of the electric field, partly
compensating for the external field. Thus, we obtain a clear physical interpretation of the Maxwell’s displacement current
in free space. Further, the energy flux vector of electromagnetic field - the Umov – Pointing vector indicates the direction
of the HMB polarization under an influence of external electromagnetic field. In particular, when charging of the capacitor
without insulator between the plates HMBs are moving from outer space in between the capacitor plate space, providing
in this case, the displacement current. Another important process of electron-positron pair birth in the physical vacuum in
the collision of two sufficiently intense electromagnetic pulse (Burke, 1997) should be interpreted as a break in a certain
(sufficiently large) number of dipoles - HMB followed by concentration of their parts of the same sign of charge at the
center of the electron and positron under the influence of forces including non-electromagnetic nature (e.g., gas dynamics,
gravity, etc.). When implementing this scenario, the HMBs will determine the mass of the birth of baryon matter in the
physical vacuum.

Substantiated to some extent the chosen postulated HMB structure, we proceed the methods of statistical mechanics. We
consider the important question of the consistency of our work to well-known basics and conclusions of statistical physics
and thermodynamics of a boson gas and its special case – a photon gas with zero rest mass of photons. Below we will
demonstrate the absence of such contradictions.

First of all, we write the state equation for gases obeying Bose statistics and Fermi statistics. Here, the dimensionless
parameter can be written

π3 =
p

nkT
= 1 ∓ 1

25/2 λ0 + · · · ,

where the signs ∓, respectively, for the Bose and Fermi gases, as well as λ−1
0 = (2πmkT )3/2/h3n - the statistical sum per

particle. The second and higher terms in the right side of the above formula are quantum statistical origin. This series
expansion is valid for values λ0 < 1 or to values n < (2πmkT )3/2/h3. The magnitude h/(2πmkT )1/2 is the length of the
thermal de Broglie wavelength, and the value h/(3mkT )1/2 corresponds to the thermal energy of the particle 3

2 kT . Thus
the Bose statistics in the usual manner is applied to the entered us with dimensional analysis and thermodynamics of the
HMB gas. For future study the Bose condensation state of the HMB gas on the lowest temperature and high pressure is
also very important item.

As for the well-known theory of blackbody radiation, in our approximation it requires some revision, which consists of
transition from the linearized formulation of the problem to a fully nonlinear formulation. The essence of this transition
can be clearly illustrated with the linearized theory of acoustics and the original theory of the nonlinear gas dynamics. It
seems to be very clear that in a limited gas volume it is possible to describe the it’s state in the acoustic approximation
using the equation for the acoustic pressure perturbation

∇2 p − 1
c2

∂2 p
∂t2 = 0.

Based on this description, we can then determine an acoustic sound radiation from a closed cavity and the radiation field
in the outer vicinity of the limit volume. In this description one can calculate the acoustic field in a gas without going into
details of what the gas medium consists of a mass of individual particles. However, to calculate the real total pressure
in the limited volume the initial nonlinear laws of gas dynamics are required (of them will be discussed in next section).
A similar situation occurs with the thermal radiation of a blackbody. Currently, in the approximation of massless photon
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equilibrium radiation field is described by linear wave equation (Isihara, 1973)

∇2E − 1
c2

∂2E
∂t2 = 0.

The radiation field is represented by a set of simple harmonic oscillators with discrete spectrum of energy. As a result of
the energy spectrum of equilibrium radiation gives the Planck formula

Uν =
8πhν3

c3

1

e
hν
kT − 1

.

Calculations using this formula are in full agreement with the experimental in the far field of radiation, where the linearized
theory actually works (as in acoustics case). However, in the case of massive bosons radiation the study of the thermal
process in limited volume should use a of nonlinear formulation, which we consider in detail below.

In the conclusion of this part we emphasize that known values p0 and ρ0 characterize the state of the photon gas in
the physical vacuum of space (in the vicinity of the Earth and Solar system) with the measured temperature CMBR
T0 = 2.735 K. The pressure p0 is the direct pressure of the HMBs medium in the region (source) at T0. This value
differs on a factor c0 = 3 · 108 m/s from the linearized values in a far field, which is calculated by methods of classical
electrodynamics. Here should specify the full analogy with the usual gaseous medium in which acoustic pressure away
from the noise source is different from the pressure at the source (this difference is also characterized by a factor containing
the magnitude of the velocity of disturbance propagation, in this case - the sound speed c).

Further consideration of the influence of thermal radiation effects environment will be carried out within the framework
of two-component model of the emitting gas with the mass of the radiation component (Ivanov, 2011).

4. Conservation Laws for Two-Component Model with the Gas and Radiation Components

Here we consider a complete system of conservation laws for two-component model of gas-like environment, taking into
account the radiation component. All used parameters will be denoted in the traditional way. Attributing them to the
corresponding indices: g - for the gas component, f - for the radiation component (e.g. density ρg andρ f ). The total value
of the density, pressure and internal energy will be denoted without an index.

The laws of conservation of mass, momentum and energy in the divergence form for each of two components have the
form (Ivanov, 2011) 

∂ρg

∂t
+ div(ρgV̄g) = qg,

∂ρ f

∂t
+ div(ρ f V̄ f ) = q f ,

∂ρgV̄g

∂t
+ div(ρgV̄g(V̄g · n̄)) + grad pg = rg,

∂ρ f V̄ f

∂t
+ div(ρ f V̄ f (V̄ f · n̄)) + grad p f = r f ,

∂ρgeg

∂t
+ div(ρgegV̄g) + pgdivV̄g = div(KggradTg) + c f g(T f − Tg) + Qg,

∂ρ f e f

∂t
+ div(ρ f e f V̄ f ) + p f divV̄ f = div(K f gradT f ) + c f g(Tg − T f ) + Q f .

(1)

This system of equations is written for the thermal conductivity of the gas and radiation components (the first terms on the
right hand side, Kg and K f - the thermal diffusivity of the gas and radiation components, respectively). The second terms
on the right sides of two last equations characterize the energy exchange between the gas and radiation components. The
last terms, Qg and Q f are supplementary sources of energy, taking into account the availability of additional channels of
energy exchange (e.g., in the case of registration of chemical reactions, etc.). The system (1) is closed by equations of
state for the gas and radiation components.

Of course, a solution of this system in general form involves considerable difficulties, because it is necessary to specify
the value of the exchange heat coefficient c f g between the phases. Substantial simplification can be achieved having con-
sidered the approximation of one velocity and one temperature movement phase in the presence of a thermodynamically
equilibrium Vg = V f = V; Tg = T f = T .
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We also assume that there are no external sources of mass and momentum in this region of flow and mass transfer between
phases: qg = q f = 0; rg = r f = 0.

Then, following (Marble, 1970; Loytcansky, 1973), we represent the continuity equation of each phase in the form

1
ρ g

dρg

dt
+ divV̄ = 0,

1
ρ f

dρ f

dt
+ divV̄ = 0

or
d
dt

(
ln
ρ f

ρg

)
= 0.

The last equality is shown the preservation of values

α = ρ f /ρg (2)

along the stream lines, and if we assume that the initial time the density ratio is constant and independent of the coordi-
nates, the equation (2) is valid at any point of considered medium.

We write total conservation laws for both components of the medium. Adding first two and second two equations in
the system (1) we obtain, taking into account our assumptions, usual equations of a continuity and a motion for one-
component medium

∂ρ

∂t
+ div(ρV̄) = 0,

∂ρV̄
∂t
+ div(ρV̄(V̄ · n̄)) + grad p = 0.

Slightly change the total energy equation. Adding the last two equations in (1) we obtain

∂

∂t

[(
cvgρg + cv fρ f

)
T
]
+ div

[(
cvgρg + cv f ρ f

)
T
]
+ pdivV̄ = −divW + Q,

−W = Kggrad Tg + K f grad T f ,Q = Qg + Q f .

In order to give the energy equation the usual form, we transform the expression

N = cvgρg + cv f ρ f ,

as
N = cvgρg(1 + (cv fρ f )/(cvgρg)) = cvgρ/(1 + α)(1 + (kg − 1)/(k f − 1)p f /pg)) = c̄vρ,

c̄v = cvg(1 + (kg − 1)/(k f − 1)p f /pg))/(1 + α), k = cp/cv.

Recall that, according to (2) α = ρ f /ρg is constant along streamlines. Consequently, when T f = Tg the ratio p f /pg is
constant along streamlines.

Similarly, we transform the equation of state for the total system

p = R̄ρT, R̄ = Rg(1 + p f /pg)/(1 + α).

The energy equation with right term −divS , where the radiation flux S = σT 4, is often used to the simulation of the radiate
flows. For further analysis with using of this approximation we obtain the following system, describing the equilibrium
one velocity flow in the presence of radiation effects:

∂ρ

∂t
+ div (ρV̄) = 0,

∂ρV̄
∂t
+ div (ρV̄(V̄ · n̄)) + grad p = 0,

∂

∂t
c̄vT + div c̄vT + p divV̄ = −div σT 4,

p = R̄ρT.

(3)
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Obviously, when ρ f = 0 we obtain the ordinary system of gas dynamics equations for one component radiation medium.
Further we present two examples of our model applications.

5. Determination of Nozzle Capacity and Model High Enthalpy Channel Flow

As the first example we consider one-dimensional steady flow of radiating gas in a Laval nozzle in a problem of modern
air breathing engine simulation. Estimation of the energy ratio of the radiation flux to the thermal flux is

M =
σT 4

ρVcpgT.

For the flow parameters of the modern engines: pressure p = 3 · 106 Pa, temperature T = 2000 K and velocity coefficient
λ = 0.2 at the value Rg = 287 J/(kg · K), we obtain: the parameter M = 5 · 10−4, the density ρ = 5.2 kg/m3 and the
velocity V = 170 m/s. It is evident that the direct contribution of radiation component (the source term on the energy
equation right side of the system (3)) in under these conditions is negligibly, and the source term for this temperature can
be discarded. Than the solution of the reduced system (3) is well known and can be expressed in terms of known gas
dynamic functions, where instead of the adiabatic index and the usual universal gas constant there are used their reduced
values k and R for the two-component medium

k = kg{1 + k f /kg(kg − 1)/(k f − 1)p f /pg}/{1 + (kg − 1)/(k f − 1)p f /pg},

R = Rg(1 + p f /pg)/(1 + α).

At temperatures T = 1000−2000 K the adiabatic index gas and radiate components are near the same kg = 9/7, k f = 4/3.
Therefore, with good accuracy we can assume k= kg. For adiabatic processes we can use the relations (Loytcansky, 1973):

p f

po
=

(
T
To

)4

,
ρ f

ρo
=

(
T
To

)3

.

At T = 2000 K the density of the radiation is negligibly small compared with the density of ordinary gas component
(Ivanov, 2011). Using the equality p = pg + p f we obtain

R = Rg
p

p − p f
. (4)

For a one-dimensional adiabatic flow of ideal gas in the Laval nozzle gas flow rate is determined by the form (Loytcansky,
1973)

G = m
poFq(λ)√

RgT o
, m =

√
k
(

2
k + 1

)
k+1
k−1 , q(λ) =

(
k + 1

2

) 1
k−1
λ

(
1 − k − 1

k + 1
λ2

) 1
k−1

,

where po and T o – the stagnation pressure and the stagnation temperature, F – cross-sectional area of the nozzle. We
consider here an ideal gas flow. For the two-component mixture we should use the reduced gas constant (4) and have the
ratio of gas flow

µ =
G

Gideal
=

√
1 − p f /p ,

where Gideal – the ideal mass nozzle flow. Coefficient µ characterizes similarity of flows. For conservation of mass flow
the channel throat cross section should be increased in 1/µ times.

To estimate the maximum irreversible pressure losses in the non-equilibrium flow of the radiate gas we can calculate mass
flow coefficient as

µn = 1 −
p f

p
.

Figure (1) shows the µ (upper curves) and µH for different gas temperature at the inlet of the nozzle with three initial
pressures p0 (20, 30 and 40 atm.). It is seen that the influence of the radiation component should be included into account
at the flow temperatures 1500K. With further increasing of temperature influence the radiation component increases
markedly.

The second example considers a two dimensional scramjet channel flow for the inlet Mach number M∞ = 4 with heat
addition and radiation effect simulations. The cross section of the channel is presented on the top of the figure (2). Here
we apply the computational fluid dynamics modeling, which describes in detail in (Ivanov & Nigmatullin, 2008, 2009).
We can see temperature and pressure distributions inside channel on the top and the hub walls. The calculation results
show that an intensive heat addition and radiation effect get the shock waves location near the channel throat section.
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Conclusion

The discovery of the finite temperature T0 = 2.735 K in outer space automatically leads to the finite rest mass of cosmic
space particles m0 = 5.6 · 10−40 kg. The space medium of these particles named here Hidden Mass Bosons can be
considered as the classic ether, or massive photon gas, or Dark Matter (Hidden Mass). The dimensional analysis allows
to predict the main performances of the medium and to indicate on the possibility of superluminal motion (without
the causality principle infringement). Thermodynamics and gas dynamics of the medium give the closed system of
thermodynamically compatible conservation laws for medium motion. We have demonstrated some practice applications
of these models for air breathing engine simulation.
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Figure 1. The nozzle mass flow coefficient for different gas temperature
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Figure 2. Pressure distributions in channel with intensive heat addition and radiation effects
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