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The authors describe how acoustic phonons can directly tunnel through vacuum and, therefore, transmit

energy and conduct heat between bodies that are separated by a vacuum gap. This effect is enabled by

introducing a coupling mechanism, such as piezoelectricity, that strongly couples electric field and lattice

deformation. The electric field leaks into the vacuum as an evanescent field, which leads to finite solid-

vacuum-solid transmission probability. Because of strong resonances in the system, some phonons can go

through the vacuum gap with (or close to) unity transmission, which leads to significant thermal

conductance and heat flux.
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The heat flux of thermally excited photons from an ideal
blackbody at a temperature T is given by the Stefan-
Boltzmann law, which states that the flux is proportional
to T4. The net flux between two blackbodies, which are at
different temperature and separated by a large vacuum gap
d, is the difference of their individual Stefan-Boltzmann
fluxes. When a realistic emissivity or absorption is consid-
ered, this T4 power law is altered, but the essential physics
still remains the same. However, when d is smaller than the
characteristic wavelength �T of the thermal spectrum, vari-
ous near-field radiation effects start to play a crucial role in
the interbody heat transport and new physics emerges (see
Refs. [1,2] for a review). In this qTd < 1 limit (qT ¼
2�=�T being the thermal wave vector), the heat flux is
enhanced particularly by evanescent waves, as explained
correctly first by Polder and Van Hove [3]. Recent advances
in experimental techniques have enabled near-field heat
transfer measurements from micrometer down to 10 nm
body distances [4–6]. In this Letter, we propose that at such
distances a new type of evanescent field heat transfer
mechanism due to acoustic phonons can exist.

Even though acoustic phonons are the major heat car-
riers in dielectrics, their effect on heat transfer through a
vacuum gap has been considered to be negligible, because
they couple weakly to photons. Here we demonstrate by
theoretical means that significant energy transmission and
heat flux is possible if the acoustic phonons can induce an
electric field, which then can leak into the vacuum [see
Figs. 1(a) and 1(b)]. Such a mechanism is provided, for
example, by the density response of free carriers due to
phonons or by the piezoelectric (PE) effect. Here we shall
focus on the latter, which gives rise to a strong coupling
between phonon-induced material deformation and macro-
scopic electric fields. The solid-vacuum-solid transmission
phenomenon described here can be thought of as an acous-
tic phonon tunneling through vacuum.

We consider a system in which two thermal reservoirs
defined by temperatures T1 and T3 radiate phonons towards
the vacuum gap [see Fig. 1(a)]. The propagating modes hit

the solid-vacuum interfaces and produce the evanescent
electric fields of interest [Fig. 1(b)], which lead to nonzero
solid-vacuum-solid energy transmission coefficient T � ¼P

�T �� for incident mode � ¼ L; S. Mode indices L and

S stand for longitudinal and transversal, respectively (the
two transversal modes are not written explicitly). The
energy transmission probability T �� ¼ T ��ðqd; �Þ
(from mode � to mode �) is a function of the phonon
polarizations, the absolute value of the incident phonon
wave vector q, and the angle of incidence �. Now, by
following Ref. [7], the thermal boundary conductance G�

arising from transmission of mode � can be defined as

G� ¼
Z d3q
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whereT eff
� is the effective energy transmission coefficient.

The total thermal conductance and net heat flux are given

by G ¼ P
�G� and P ¼ RT1

T3
GdT, respectively.

Temperature dependency arises from phonon occupation
number Nð!q; TÞ ¼ ½expð@!q=kBTÞ � 1��1, and in T eff

�

the temperature is buried into the thermal wave vector
qT ¼ 2�=�T ¼ kBT=@v� (�T is the thermal phonon wave-

length, and v� is the phonon velocity). For the sake of

simplicity, we have assumed a linear dispersion !q ¼ v�q

in Eq. (1b). The parameter qc � 1=a is the Brillouin or
Debye cutoff (a being the lattice constant). The bracket
h. . .i stands for a solid angle average over half-space. Note
that if T � ¼ 1 and qc

qT
! 1, then T eff

� ¼ 1 and P is equal

to the phonon blackbody flux.
The energy transmissions are calculated from the scat-

tering matrices (S matrix) Si (i ¼ a; b) of the two solid-
vacuum interfaces a and b. We define Si in such a way that

it couples the amplitudes A�
�� of propagating fields and
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exponentially decaying near-fields [see Fig. 1(d)]. Here,
� ¼ �, where þ (� ) refers to a left-to-right (right-to-
left) propagating or decaying wave, � ¼ 1; 2; 3 is the
material index (2 referring to the vacuum gap), and � is
the mode or channel index (� ¼ E refers to the evanescent
channel). For example, for the interface a we write

A�
1L

A�
1S

A�
1E

Aþ
2E

0BBB@
1CCCA ¼ Sa

Aþ
1�

A�
2E

� �
¼

ra
3�1

t0a
3�1

ta
1�1

r0a
1�1

 !
Aþ
1�

A�
2E

� �
: (2)

The labels of the submatrices ra, t
0
a, ta, and r0a indicate the

size of these matrices. We assume that in all materials there
is only one channel that arises from evanescent electric
fields; i.e., we utilize the quasistatic approximation. Now,

A�
�E is more conveniently related to the evanescent poten-

tial �E instead of the evanescent electric field EE (EE ¼
�r�E). The amplitudes A�

�E are coupled to the acoustic
amplitudes if an acoustic phonon creates a periodic charge
density or polarization, which then creates an evanescent
potential (or field)�E / e�	qz due to a boundary. Here the
evanescent field is excited by the oscillating polarization
perpendicular to the z axis, and, therefore, we have 	 ¼
j sin�j. The retardation effects become important if the
oscillation period of the surface polarization is of the order
of the time it takes light to make a round trip across the gap.
This leads to cutoff energy Ec ¼ hc=2d � 620 meV�
ð�m=dÞ, below which our model is valid. Note that Ec is
above acoustic phonon energies when d < 10 �m.

For the full solid-vacuum-solid system we need to find
the total Smatrix S ¼ Sa � Sb that couples the amplitudes
of the different solids. From S we specifically need the
submatrix t, which describes the amplitude transmission.
By solving S ¼ Sa � Sb and taking into account the ex-
ponential factors arising from the finite distance d, we find

t�� ¼ ft0bg�½1� e�2	qdr0ar0b��1ftag�e�	qd; (3)

where we have inverted the z axis for Sb so that Sa and Sb

have a similar structure. The energy transmission coeffi-
cients are given by T �� ¼ ���jt��j2, where ��� is a

factor that converts the amplitude transmission into energy
transmission probability. We write the total energy trans-
mission T � ¼ P

�T �� in the form

T � ¼ e2	qd

ðe2	qd � RÞ2 þ I2

X
�

A��; (4)

where A�� ¼ ���jft0bg�ftag�j2, R ¼ Refr0ar0bg, and I ¼
Imfr0ar0bg. ��� can be determined from the acoustic

Poynting vector [8], and in the simplest case of isotropic

solid we have ��� ¼ 
3v�


1v�
Refbq�gz, where 
i is the mass

density of material i and fbq�gz ¼ ½1� ðv2
�=v

2
�Þsin2��1=2 is

the z-direction propagation vector.
Our next task is to calculate the energy transmission

coefficient T � in the case of two similar PE crystals

separated by a vacuum gap. Within the quasistatic model,
the relevant field quantities (see Table I) and their couplings
are defined by [8]

T ¼ beTr�þ bcruu; (5a)

D ¼ �b"r�þ beruu; (5b)

rTb"r� ¼ rTberuu; (5c)

where r ¼ ½@=@x; @=@y; @=@z�T and ru is defined in the
supplementary material [9]. Note that Eq. (5c) is basically a
Poisson equation and the source termrTberuu gives rise to
the phonon-induced evanescent electric fields. The S ma-
trices Si are solved from a boundary condition equation
that is obtained by requiring that the normal component of
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FIG. 1 (color online). Illustration of the phonon tunneling effect caused by evanescent electric fields. (a) Cross-sectional slice of area
A illustrating a phonon incoming from a thermal bath at temperature T1 and hitting a solid-vacuum interface. The phonon carries an
electric field, illustrated by þ or � signs of polarization in between the wave fronts. The polarization induces an electric field into the
vacuum gap 2. The field enables finite transmission over the gap into the thermal bath at temperature T3. The wave fronts of the
reflected phonon are not shown. (b) A projection showing the spatial behavior of the phonon waves (u) and of the evanescent electric
field (E ¼ EE). The dashed curves depict the ‘‘reflected’’ evanescent field. (c) Scattering of the incoming mode � into different
propagating modes. bq� and p� are the propagation and polarization vectors, respectively. (d) The scattering matrix formulation.

TABLE I. Field quantities and constants.

Symbol Size Name

T 6� 1 Stressbe 3� 6 Piezo tensor

� 1� 1 Potentialbc 6� 6 Stiffness tensor

u 3� 1 Lattice displacement

D 3� 1 Electric displacementb" 3� 3 Dielectric constant
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stress T vanishes at the free surfaces and by requiring the
continuity of the potential � and the normal component of
electric displacement D. The boundary condition equation
and the resulting Si are given in the supplementary material
[9]. We calculate T � by solving the S matrix numerically.

We adopt material parameters that are close to that of ZnO
[8] with the simplifying approximation fbegij ¼ �3j�i3e33,

where e33 ¼ 1:3 C=m2. Furthermore, we assume that the
acoustic properties are isotropic and that the PE stiffening
can be neglected for the propagating modes. These assump-
tions have very little effect on the angular averaged quan-
tities of interest. We use isotropic values c11 ¼ 209:7�
109 N=m2, c44 ¼ 42� 109 N=m2, and fb"gij ¼ 10"0�ij.

The phonon velocities are given by vL ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
c11=


p ¼
6119:3 m=s and vS ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c44=


p ¼ 2738:6 m=s, where the
mass density 
 ¼ 5600 kg=m3.

Figure 2 showsT �ðqd; �Þ for phonon tunneling from a PE

material to another across a vacuum gap. Note that for fbegij ¼
�3j�i3e33 the acoustic and electric fields are decoupled for

the transversal mode whose polarization is parallel to the
interfaces. Therefore, in the following the S mode refers to
the mode whose polarization is in the plane of incidence.
There are two local minima in T S: one at � � 25� and
another one at � � 40�. The position of the latter minima can
be related to the phase change of the evanescent electric field
in the vacuum-solid reflection. The former minima is the
critical incidence angle where the quasilongitudinal surface
mode is exited. Most important effects for the energy trans-
mission are the strong resonance features for both modes:
For some ðqd; �Þ values, T � is very large or even equal to

unity. The resonances arise from the multiple reflections of
the evanescent field in the vacuum gap, which leads to the
½ðe2	qd � RÞ2 þ I2��1 factor in T �. The elements r0a;b are

dictated by the vacuum-solid boundary conditions, and their
real parts or moduli are not limited below unity. Thus wemay

have R> 1 and I 	 1, which leads to a sharp resonance
peak at 2	qd ¼ lnR. Indeed, for � ¼ L, we have R� 1:5
for all incident angles, and this is the origin of the sharp
maximum trajectory in T Lðqd; �Þ. For � ¼ S, R> 1 only
for angles � < 68�, and above this threshold no sharp reso-
nances exist. For small � at qd 
 1, T L ¼ 1 at the reso-
nance, whereas the amplitude of the resonance peak in T S

decays as a function of qd (see the lower panels of Fig. 2).
Note that the phonon resonant tunneling here has a striking
similarity to the resonant photon tunneling described, for
example, in Ref. [2].
Inserting the calculated T � into Eq. (1) and performing

numerical integration, we obtain T eff
� and G�. The results

are presented in Fig. 3. We observe that at low temperatures
(qTd < 1) the effective transmission T eff

S is �15% of the
unity transmission resulting in relatively largeGS, which is
of the order of the maximum possible thermal conductance
allowed by Eq. (1a). The large T eff

S at low temperatures
follows from the broadened resonances and from the large
transmission at large � and small qd (see Fig. 2). For � ¼
L we have sharp resonances leading to a small effective
transmission and to GL 	 GS at low temperatures.
Next, we want to investigate the dependency of T eff

� on

qTd and the contribution of different phonons in the ðqd; �Þ
phase space to the heat transport. We divideT eff

� into small

angle T eff
�;�<�th

and large angle T eff
�;�>�th

contributions:

T eff
� ¼ T eff

�;�<�th
þT eff

�;�>�th
; (6)

where the angular integrals of the different contributions
are limited by the threshold �th, which is chosen in such a
way that the major contribution toT eff

�;�<�th
comes from the

resonance trajectory at qd > 1. The exact choice of �th is,
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FIG. 2 (color online). Logarithmic contour plot of energy
transmission coefficients T � (� ¼ L; S) between two PE bodies

as a function of normalized wave vector qd and the angle of
incidence �. White regions have T � < 10�8. The lower panels

show log-log blowup of the small-� large-qd region.

FIG. 3 (color online). Effective transmissionT eff
� (the inset) as

a function of qTd and the interface thermal conductance G� (the

main part) as a function of temperature. The curves are obtained
from the T � of Fig. 2 and Eq. (1) (qc=qT ! 1). The dashed

curves are small angle contributions T eff
�;�<�th

with �th ¼ 3�. The
dot-dashed curve indicates the ðqTdÞ�3 slope. For the y-axis
units of the main figure we have 2�2v�kB=30d

3 ¼
Y� � ð100 nm=dÞ3 W=Km2, where YLðSÞ ¼ 55:6 (24.9).
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therefore, somewhat arbitrary, and in the numerical calcu-
lations we define �th ¼ 3�, whence � < �th roughly corre-
spond to the phase space of the lower panels of Fig. 2.
At the high temperature limit (qTd 
 1), small and large
angle effective transmissions can be written as [9]

T eff
�;�<�th

�X
�

15

�3

½lnRð0Þ�nþ1

ð2qTdÞ2þn

fn��ð0Þ
n!

Fn

�
qc
qT

; �th

�
; (7a)

T eff
�;�>�th

� 15

�4

1

ðqTdÞ3
�Z qcd

0
dyy2T �ðy; �Þ

�
���th

; (7b)

where FnðqcqT ; �thÞ ¼
R
qc=qT
xth

dx x1�n

expðxÞ�1 , with xth ¼
lnRð�thÞ=ð2qTd sin�thÞ, f��ð�Þ ¼ A��ð�Þ=Ið�Þ, and

fn��ð�Þ is the first nonzero derivative of f��ð�Þ. Because
of the decay of the resonance for the S mode, T eff

S;�<�th
is

very small. This means that practically all contribution to
T eff

S andGS at any temperature comes from the large angle
part T eff

S;�>�th
. At high temperatures, T eff

�;�>�th
is given by

Eq. (7b), which explains the ðqTdÞ�3 falloff of T eff
S and

the saturation of GS. For the L mode the high temperature
T eff

� has a large contribution arising from T eff
L;�<�th

. This

contribution eventually exceeds the large angle part, and,
as a result, there is no saturation in GL. Close to � ¼ 0,
T eff

L;�<�th
is dominated by f1LLð�Þ, and by setting qc

qT
! 1 in

Eq. (7a), we find that T eff
L;�<�th

/ ðqTdÞ�3
P1

k¼1
expð�kxthÞ

k ,

resembling a ðqTdÞ�5=2 behavior. It should be noted that
the temperature dependency of the large angle contribution
is not affected by the ratio qc=qT . As q

�1
c is of the order of

the lattice constant a, Eq. (7b) is valid if d > a. The small
angle contribution depends on qc=qT . For example, if

qc=qT 	 1, then T eff
L;�<�th

/ ðqTdÞ�3 ln½2qcd sin�thlnRð�thÞ �. Thus,

GL also saturates when the cutoff qc is exceeded.
At this point we summarize our findings: We have for-

mulated the thermal boundary conductance of a solid-
vacuum-solid system [Eq. (1)] by using an acoustic phonon
energy transmission probability [Eq. (4)] given by the
scattering matrix [Eq. (2)], which couples the different
solids by an evanescent channel produced by phonon-
induced electric fields (Fig. 1). These fields can lead to a
significant energy transmission probability for some parts
of the wave vector angle of incidence ðqd; �Þ phase space
(Fig. 2). The transmission exhibits resonances, which arise
from the multiple reflections of the evanescent field in the
vacuum gap. The L mode shows a strong and sharp reso-
nance trajectory across the ðqd; �Þ plane with a unity
energy transmission probability. The resonance trajectory
approaches � ¼ 0 as qd ! 1. The Smode exhibits similar
features. However, for a small qd and a large � the
resonance is broadened, and in the qd 
 1 limit the energy
transmission decays rapidly. At low temperatures
(qTd < 1), the broadened resonance at small qd leads to
a large contribution from the S mode to the thermal con-
ductance (�15% of the maximum possible thermal con-
ductance defined by unity transmission). The small
qd/large � part of the phase space dominates the S-mode

heat transport leading to a saturation of the thermal con-
ductance of the Smode at high temperatures (Fig. 3). If the
thermal phonon wavelength �T is sufficiently smaller than
the lattice constant, the L mode shows no such saturation.
This is due to the strong resonance in the transmission that
persists even at qd 
 1 and, therefore, allows short wave-
length phonons to go through the vacuum gap. Note that
our method to calculate the thermal conductance is essen-
tially similar to that adopted in (ballistic) thermal boundary
resistance calculations [7], which means that the thermal
excitation of local acousto-electric modes related to the
solid-vacuum boundaries is not taken into account. Here,
the boundary effects and the evanescent fields are solely
due to radiation of acoustic phonons from the bulk baths.
One can also explicitly take into account thermal excitation
and couplings of the local modes, expected to enhance the
interbody coupling and the thermal conductance. This
approach, typically adopted in photon near-field studies
[1,2], will be left for future investigations.
Acoustic phonon heat transfer through vacuum can be

experimentally verified with direct thermal conductance
measurements, by using piezoelectric materials. The trans-
mission of acoustic energy across a vacuum gap at long
wavelengths can be investigated by measuring the trans-
mission of a single acoustic wave by utilizing, for example,
surface acoustic wave devices. Finally, we note that
the effects described in this Letter can also contribute to
the thermal conductivity of polycrystalline piezoelectric
materials and percolation systems consisting of piezoelec-
tric particles. Furthermore, as free electrons couple
strongly to electric fields, a similar heat transport effect,
as the one discussed in this Letter, can also occur between
metallic and piezoelectric bodies.
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