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Abstract

Since the end of 80’s, the region of sky of galactic coordinates (l ∼ 309o, b ∼ 18o), corre-

sponding to a declination γ ∼ −44o and right ascension α ∼ 202o, usually denoted as the

”Great Attractor”, is known to control the overall galaxy flow in our local Universe. In

this sense, this direction might represent a natural candidate to characterize a hypothetical

Earth’s ”absolute motion”. Our analysis of the extensive ether-drift observations recently

reported by an experimental group in Berlin provides values of α and γ that coincide almost

exactly with those of the Great Attractor and not with the values γ ∼ −6o and α ∼ 168o

obtained from a dipole fit to the anisotropy of the CMB. This supports in a new fashion the

existence of a discrepancy between the observed motion of the Local Group and the direction

obtained from the CMB dipole.
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1. Introduction

Since the end of 80’s, a region of the sky in the direction of the Centaurus cluster, the so called

”Great Attractor”, at galactic coordinates (l ∼ 309o, b ∼ 18o), corresponding to a declination

γ ∼ −44o and right ascension α ∼ 202o, is known to play an important role in describing the

deviations of galaxies from a pure Hubble flow in our local Universe, [1, 2, 3, 4, 5, 6]. In this

sense, the Great Attractor, marking a preferred direction in space, might represent a natural

candidate to characterize a hypothetical Earth’s ”absolute motion”.

On the other hand, since the discovery of an anisotropy in the cosmic microwave back-

ground (CMB), it has been generally accepted that the kinematical parameters for such an

absolute motion should coincide with those deduced from a dipole fit to the COBE data

[7]. In this context, one predicts a velocity of the Solar System v ∼ 370 km/s, an average

declination angle γ ∼ −6o and a right ascension α ∼ 168o. These values have usually been

adopted in the interpretation of the data from the ether-drift experiments in a laboratory.

However, the latest ether-drift experiments, combining the possibility of active rotations

of the apparatus with the use of cryogenic optical resonators [8, 9, 10], have reached such a

high precision (O(10−16) in the relative frequency shifts) to require a fully model-independent

analysis of the data. In fact, the physical nature of a hypothetical preferred frame is still

unknown. Therefore, assuming from the very beginning one particular set of values for

(v, γ, α) one might introduce uncontrolled errors in the interpretation of the experimental

results.

This is even more true noticing that a fully model-independent analysis [11] of the ex-

tensive ether-drift observations reported by Herrmann et al. in Ref.[9] provides an average

(absolute) value of the declination angle |γ| ∼ 43o ± 3o that would rather favour an alterna-

tive of the type represented by the Great Attractor. In this paper we’ll further extend the

analysis of Ref.[11] that, being limited to a restricted set of observables, could not determine

the value of α and the sign of γ. As we shall illustrate, our new results, after inclusion of

other observable quantities from Ref.[9], provide values of α and γ that are in remarkable

agreement with those of the Great Attractor. For this reason, our results, while providing the

first modern evidence for an ether drift from a laboratory experiment, support the indications

obtained from the observed motion of galaxies.

The plane of the paper is as follows. In Sect.2 we shall report the relevant formalism

used in the analysis of the ether-drift experiments and the basic experimental data of Ref.[9].

In Sect.3 we shall present our analysis of these data while in Sect.4 we shall summarize our
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results and present our conclusions.

2. General formalism and experimental data

The starting point for our analysis is the expression for the relative frequency shift of the two

optical resonators at a given time t. This is expressed as [9]

δν(t)

ν0
= S(t) sin 2ωrott + C(t) cos 2ωrott (1)

where ωrot is the rotation frequency of one resonator with respect to the other which is

kept fixed in the laboratory and oriented north-south. The Fourier expansions of the two

amplitudes S(t) and C(t) are predicted to be

S(t) = Ss1 sin τ + Sc1 cos τ + Ss2 sin(2τ) + Sc2 cos(2τ) (2)

C(t) = C0 + Cs1 sin τ + Cc1 cos τ + Cs2 sin(2τ) + Cc2 cos(2τ) (3)

where τ = ωsidt is the sidereal time of the observation in degrees and ωsid ∼ 2π

23h56′
.

Introducing the colatitude of the laboratory χ(∼ 37.5o for Berlin), one finds the expres-

sions reported in Table I of Ref. [9],

C0 = −K
sin2 χ

8
(3 cos 2γ − 1), (4)

Cs1 =
1

4
K sin 2γ sin α sin 2χ, (5)

Cc1 =
1

4
K sin 2γ cos α sin 2χ, (6)

Cs2 =
1

4
K cos2 γ sin 2α(1 + cos2 χ), (7)

Cc2 =
1

4
K cos2 γ cos 2α(1 + cos2 χ) (8)

where

K = (1/2 − β + δ)
v2

c2
(9)

and (1/2−β+δ) indicates the Robertson-Mansouri-Sexl [12, 13] (RMS) anisotropy parameter.

The corresponding S−quantities are also given by Ss1 = −Cc1/ cos χ, Sc1 = Cs1/ cos χ,

Ss2 = − 2 cos χ

1+cos2 χ
Cc2 and Sc2 = 2 cos χ

1+cos2 χ
Cs2. It might be interesting that these relations can

also be derived from an old paper by Nassau and Morse, published in the Astrophysical

Journal about eighty years ago (see Eqs.(20-24) of Ref.[14]).
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Table 1: The experimental values of the C−coefficients for the 15 observation periods of

Ref.[9].

Observation i Cs1[x10−16] Cc1[x10−16] Cs2[x10−16] Cc2[x10−16]

1 −2.7 ± 4.5 5.3 ± 4.8 −3.2 ± 4.7 1.2 ± 4.2

2 −18.6 ± 6.5 8.9 ± 6.4 −11.4 ± 6.5 −5.0 ± 6.4

3 −0.7 ± 3.9 5.3 ± 3.6 5.0 ± 3.5 1.6 ± 3.8

4 6.1 ± 4.6 0.0 ± 4.8 −8.1 ± 4.8 −4.0 ± 4.6

5 2.0 ± 8.6 1.3 ± 7.7 16.1 ± 8.0 −3.3 ± 7.2

6 3.0 ± 5.8 4.6 ± 5.9 8.6 ± 5.9 −6.9 ± 5.9

7 0.0 ± 5.4 −9.5 ± 5.7 −5.5 ± 5.6 −3.5 ± 5.4

8 −1.1 ± 8.1 11.0 ± 7.9 0.9 ± 8.3 18.6 ± 7.9

9 8.6 ± 6.5 2.7 ± 6.7 4.3 ± 6.5 −12.4 ± 6.4

10 −4.8 ± 4.8 −5.1 ± 4.8 3.8 ± 4.7 −5.2 ± 4.7

11 5.7 ± 3.2 3.0 ± 3.4 −6.3 ± 3.2 0.0 ± 3.5

12 4.8 ± 8.0 0.0 ± 7.0 0.0 ± 7.6 1.5 ± 7.7

13 3.0 ± 4.3 −5.9 ± 4.3 −2.1 ± 4.4 14.1 ± 4.3

14 −4.5 ± 4.4 −2.3 ± 4.5 4.1 ± 4.3 3.2 ± 4.3

15 0.0 ± 3.6 4.6 ± 3.4 0.6 ± 3.2 4.9 ± 3.3

Notice a critical detail for the separation of the signal in its elementary components. A

small mismatch in the definition of the sidereal time, say τ true = τ + ∆τ , induces a rotation

of the various parameter pairs of angles ∆τ and 2∆τ with a corresponding re-definition of

the right ascension αtrue = α + ∆τ .

The experimental data reported in Ref.[9] were obtained during 15 short-period observa-

tions performed from December 2004 to April 2005. As suggested by the same authors, it

is safer to concentrate on the observed time modulation of the signal, i.e. on the quantities

Cs1, Cc1, Cs2, Cc2 and on their S-counterparts. In fact, the constant components C̄ = C0 and

S̄ ≡ S0 are most likely affected by spurious systematic effects such as thermal drift (see also

the discussion in Ref. [8]).

The individual determinations of the various parameters, for each of the 15 short-period

observations, as extracted from Fig.3 of Ref.[9], are reported in Table 1 and Table 2.
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Table 2: The experimental values of the S−coefficients for the 15 observation periods of

Ref.[9].

Observation i Ss1[x10−16] Sc1[x10−16] Ss2[x10−16] Sc2[x10−16]

1 11.2 ± 4.7 11.9 ± 4.9 1.8 ± 4.9 0.8 ± 4.5

2 1.8 ± 6.5 −4.3 ± 6.5 6.4 ± 6.4 1.8 ± 6.4

3 −3.3 ± 3.8 2.9 ± 3.8 −5.9 ± 3.8 4.6 ± 4.0

4 12.7 ± 5.1 14.3 ± 5.5 −1.9 ± 5.3 −3.3 ± 5.1

5 4.7 ± 8.4 −6.9 ± 7.3 −1.8 ± 8.0 −7.8 ± 7.0

6 5.2 ± 5.8 −3.0 ± 5.9 7.1 ± 5.9 −5.9 ± 5.8

7 11.1 ± 5.3 −13.4 ± 5.4 −4.5 ± 5.5 −9.8 ± 5.5

8 −12.1 ± 8.9 0.0 ± 8.8 −3.1 ± 9.0 1.4 ± 8.9

9 −4.8 ± 6.3 6.5 ± 6.4 −8.1 ± 6.3 3.5 ± 6.5

10 9.8 ± 5.0 4.8 ± 5.0 1.9 ± 5.0 −9.2 ± 4.8

11 0.0 ± 3.2 −3.9 ± 3.6 1.0 ± 3.1 −2.2 ± 3.4

12 −12.7 ± 7.7 8.5 ± 6.8 −8.3 ± 7.2 −7.1 ± 7.4

13 −7.9 ± 4.7 −4.3 ± 4.8 −1.9 ± 4.8 −6.2 ± 4.7

14 16.1 ± 4.9 12.0 ± 5.2 2.9 ± 4.9 −9.6 ± 4.8

15 13.9 ± 3.9 −7.0 ± 3.4 −3.3 ± 3.5 3.0 ± 3.6

3. Analysis of the data

The analysis of Ref.[11] was restricted to the combinations

C11 ≡
√

C2
s1 + C2

c1 (10)

C22 ≡
√

C2
s2 + C2

c2 (11)

S11 ≡
√

S2
s1 + S2

c1 (12)

S22 ≡
√

S2
s2 + S2

c2 (13)

This was useful to reduce the model dependence in the analysis of the data. In this way,

in fact, the right ascension α and any possible uncertainty related to the definition of the

sidereal time drop out from the theoretical predictions that will only depend on |γ|, and the
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Table 3: The experimental values of the combinations of C− and S− coefficients defined in

Eqs.(10)-(13) as obtained from our Table 1 and Table 2.

.

Observation i C11[x10−16] C22[x10−16] S11[x10−16] S22[x10−16]

1 5.9 ± 4.7 3.5 ± 4.6 16.3 ± 4.8 2.0 ± 4.9

2 20.6 ± 6.4 12.5 ± 6.5 4.6 ± 6.5 6.6 ± 6.4

3 5.3 ± 3.6 5.3 ± 3.6 4.4 ± 3.8 7.5 ± 3.8

4 6.1 ± 4.6 9.0 ± 4.8 19.1 ± 5.3 3.8 ± 5.1

5 2.4 ± 8.4 16.5 ± 8.0 8.4 ± 7.7 8.0 ± 7.1

6 5.5 ± 5.9 11.0 ± 5.9 6.0 ± 5.9 9.2 ± 5.9

7 9.5 ± 5.7 6.5 ± 5.5 17.4 ± 5.4 10.7 ± 5.5

8 11.0 ± 7.9 18.7 ± 7.9 12.1 ± 8.9 3.4 ± 9.0

9 9.1 ± 6.5 13.1 ± 6.4 8.1 ± 6.4 8.8 ± 6.4

10 7.0 ± 4.8 6.5 ± 4.7 10.9 ± 5.0 9.4 ± 4.8

11 6.4 ± 3.1 6.3 ± 3.2 3.9 ± 3.6 2.4 ± 3.4

12 4.8 ± 8.0 1.5 ± 7.7 15.3 ± 7.4 10.9 ± 7.3

13 6.6 ± 4.3 14.3 ± 4.3 9.0 ± 4.7 6.5 ± 4.7

14 5.1 ± 4.5 5.2 ± 4.3 20.0 ± 5.0 10.0 ± 4.8

15 4.6 ± 3.4 5.0 ± 3.3 15.6 ± 3.8 4.4 ± 3.5

overall normalization |K|. The relevant numbers for these auxiliary quantities can be found

in Table 3. Thus, we obtain the relations

C11 =
1

4
|K| sin 2|γ| sin 2χ C22 =

1

4
|K| cos2 γ(1 + cos2 χ). (14)

The corresponding S-coefficients are also predicted as S11 = C11/ cos χ and S22 = 2 cos χ

1+cos2 χ

C22. Using the weighted averages of the values in Table 3 for these coefficients

〈C11〉 = (6.7 ± 1.2) · 10−16 〈C22〉 = (7.6 ± 1.2) · 10−16 (15)

〈S11〉 = (11.0 ± 1.3) · 10−16 〈S22〉 = (6.3 ± 1.3) · 10−16 (16)

one gets [11] an average declination

|γ| ∼ 43o ± 3o (17)
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Table 4: The absolute value of the declination angle |γ| and the normalization factor |K|,

obtained from the data in Table 3 for groups of three observation periods.

Observations |γ| [degrees] |K|[x10−16]

(1-3) 46+7
−9 29 ± 6

(4-6) 32+7
−9 33 ± 7

(7-9) 39+6
−8 43 ± 7

(10-12) 42+7
−9 27 ± 5

(13-15) 41+6
−7 36 ± 5

and an average normalization

|K| ∼ (33 ± 3) · 10−16 (18)

.

To check the regularity of the data, one can also extract the average declination angle

from various groups of observation periods. Packing the data in groups of three observations,

one gets the results shown in Table 4. Notice the remarkable consistency among the various

sets of data.

To extend the above analysis and get information on α and the sign of γ, we shall now

try to re-construct the full amplitudes S(t) and C(t) of Eq.(1) or, more precisely, their

variable parts S(t)− S0 and C(t)−C0. In this way, in fact, possible problems related to the

deconvolution of the signal in its elementary components drop out. To this end, we shall use

Eqs.(2) and (3)to generate a suitable signal where:

i) the individual C− and S− coefficients are fixed to their experimental values of

Ref.[9] reported in our Tables 1 and 2

ii) the average times for the 15 individual observation periods are taken from Fig.3 of

Ref.[9]. Once the figure is reproduced on the screen, these time coordinates can be extracted

to a good accuracy from the number of pixels Npixel of the data points. In this way we get

(in days since 1/1/2000) t = (Npixel−475)
1.7 + 1900 where Npixel= 317, 344, 351, 365, 377, 400,

412, 423, 427, 437, 470, 493, 496, 503, 507 for the 15 observation periods.

The resulting data sets are reported in Table 5.
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Table 5: The re-constructed amplitudes obtained following the steps i) and ii) described in

the text.

Observation i (C(ti) − C0)[x10−16] (S(ti) − S0)[x10−16]

1 2.7 ± 6.8 17.0 ± 6.9

2 19.0 ± 9.2 −7.6 ± 9.2

3 9.3 ± 5.5 0.9 ± 5.5

4 13.3 ± 6.8 12.1 ± 7.5

5 −13.6 ± 12.2 11.7 ± 11.3

6 −7.7 ± 8.3 −13.3 ± 8.3

7 −7.6 ± 8.1 −20.7 ± 7.8

8 −2.4 ± 11.7 −3.0 ± 12.6

9 3.1 ± 9.5 3.4 ± 9.1

10 12.0 ± 6.8 −6.3 ± 7.1

11 0.6 ± 4.9 −4.5 ± 4.9

12 −1.9 ± 11.3 −11.1 ± 10.5

13 4.1 ± 6.2 −0.2 ± 6.8

14 2.9 ± 6.4 −18.8 ± 7.0

15 −1.4 ± 5.0 −14.7 ± 5.1

We can now try to fit the values of Table 5 to the theoretical predictions (µ = ±1)

C(t) − C0 = µ|K|(
sin 2χ sin 2γ cos(α − τ)

4
+

(1 + cos2 χ) cos2 γ cos 2(α − τ)

4
) (19)

S(t) − S0 = µ|K|(
sin χ sin 2γ sin(α − τ)

2
+

cos χ cos2 γ sin 2(α − τ)

2
) (20)

to obtain information on |K|, α and the sign of γ.

Before presenting the results, we observe that the structure of the problem is such that

one should first suitably constrain the fit. In fact, all together there are 16 possible choices

arising from the 2 possible signs of µ, the 2 possible signs of γ and the 4 possible choices of

α (sin α = ±| sin α| and cos α = ±| cos α|). Considering all possibilities we have found that

the various fits to the values of C(t) − C0 do not provide any definite information. In fact,

in all cases the quality of the chi-square is very close to that of the ”null result” defined by

|K| = 0 and the parameters cannot be constrained in any meaningful way.
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Considering the values of S(t) − S0 the situation is different. In fact the fit routine

(MINUIT) finds in this case two configurations whose chi-square is definitely lower than the

chi-square of the ”null-result” (∼ 38). The existence of multiple solutions had to be expected

since the C− (and S−) coefficients of Eqs.(4)-(8) are unchanged under the simultaneous

replacements γ → −γ and α → α + π. The absolute minimum, whose chi-square is ∼ 16 (for

12 degrees of freedom), corresponds to µ = −1 with the physical parameters being in the

following ranges

|K| = (39 ± 15) · 10−16 γ = −30o+16o

−22o α = 204o ± 12o (21)

As one can see, the values for |K| and |γ| from our reconstructed amplitude for S(t)−S0 are

in good agreement with Eqs.(17) and (18), and with those reported in our Table 4, that were

deduced from the average values of the positive-definite coefficients C11, C22, S11 and S22.

We have no explanation for the different behaviour obtained using our re-constructions of

C(t) − C0 and S(t) − S0. Perhaps this might be due to the asymmetric experimental set-up

where only one cavity is rotated or, since the 15 data sets, each spanning from 24 hours to 100

hours in length, have been summarized into just a single point, the inherent inexactness in

our re-construction affects differently the two sets of data. On the other hand, the indications

we have obtained from S(t) − S0 are so consistent with the previous results of Ref.[11], and

with those reported in our Table 4, to suggest that they should still persist in a more refined

analysis using the full raw data or after inclusion of new observations.

4. Summary and conclusions

The possibility of a large concentration of matter in the region of sky γ ∼ −44o and α ∼ 202o,

the ”Great Attractor”, was proposed to describe the deviations of galaxies from a pure Hubble

flow [1]-[4] in our local Universe. Its inclusion in multi-attractor models, see e.g. Ref.[15],

provides a successful representation of the observed velocity field for large samples of galaxies,

such as the ∼ 3400 ones contained in the MARK III catalog [18].

The resulting motion of the Local Group is known to exhibit some discrepancy with

respect to the direction obtained from a dipole fit to the anisotropy of the CMB. The value

of the misalignment angle is both sample- and model dependent. For instance in the multi-

attractor model of Ref.[15] it ranges from 11o to 49o with a typical value of ∼ 30o.

In principle, the existence of this discrepancy might also show up in ether-drift experi-

ments. Up to now, these have been analyzed assuming that the kinematical parameters of a
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hypothetical Earth’s ”absolute motion” should coincide with those extracted from a dipole fit

to the COBE data. Rather, in our opinion, one should leave out the angular variables γ and

α and the quantity K = (1/2 − β + δ)v2

c2
as free parameters and check the overall agreement

with the data.

In this paper, using the extensive ether-drift observations reported by Herrmann et al. [9],

we have obtained evidence for an angular pair that sizeably differs from the values α ∼ 168o

and γ ∼ −6o obtained from a dipole fit to the anisotropy of the CMB. The motion we have

detected points toward γ = −30o+16o

−22o and α = 204o ± 12o and the central values coincide

with those of the Shapley supercluster [16]. However, the error in γ is large. Therefore, we

could use the result of Ref.[11] |γ| = 43o ± 3o, to further sharpen our estimate. In this way,

the angular parameters of the Earth’s motion coincide almost exactly with those of the core

of the Great Attractor (γ ∼ −44o and α ∼ 202o).

Actually, the agreement with the position of the Great Attractor is even too good. In

fact, an ether-drift observation on the Earth contains, in principle, the effect of the solar

motion (‘sm’) relatively to the centroid of the Local Group. For instance, using for this

motion the values of Ref.[17], vsm ∼ (306 ± 18) km/s, γsm ∼ (51o ± 6o), αsm ∼ (332o ± 11o),

and using for the peculiar motion of the Local Group the values of Ref.[15] obtained fitting

the multi-attractor parameters to the full MARK III catalog, namely VLG ∼ 488 ± 80 km/s

(in the CMB frame), γLG ∼ −50o ± 8o and αLG ∼ 202o ± 10o, one can predict a theoretical

velocity through

vth = VLG + vsm (22)

obtaining the following values

vth = (276 ± 71) km/s γth = −30o+18o

−23o αth = 240o+21o

−28o (23)

These might be compared with the results of our fit (21) and with our Eqs.(17) and (18)

having a theoretical estimate of |(1/2 − β + δ)| to transform into a velocity value, through

Eq.(9), the precise indication (18) on the normalization factor |K|.

To this end, we observe preliminarily that our model-independent analysis leads to rather

large values of the RMS anisotropy parameter. In fact, using our result |K| ∼ (33±3) ·10−16

and the theoretical range vth ∼ (276 ± 71) km/s reported above, one obtains a range of the

RMS parameter 25 · 10−10 ≤ |(1/2 − β + δ)| ≤ 70 · 10−10 (with a central value 39 · 10−10) in

good agreement with the theoretical prediction |(1/2− β + δ)|th ∼ 42 · 10−10 of Refs.[19, 20].

Equivalently, using the two theoretical inputs |(1/2−β+δ)|th ∼ 42·10−10 and vth ∼ (276±71)

9



km/s one predicts 20 · 10−16 ≤ |K|th ≤ 56 · 10−16 (with a central value 36 · 10−16) in good

agreement with our Eq. (18).

This should be compared with the result of Ref.[9] (where the values v ∼ 370 km/s,

α ∼ 168o and γ ∼ −6o were assumed) |(1/2−β + δ)| ∼ (2±2) ·10−10 . In this way, one would

predict |K| ∼ (3± 3) · 10−16 which is one order of magnitude smaller than the value reported

in our Eq.(18). In this sense, our results show that the very small RMS parameter reported

in Ref.[9] , rather than being due to the smallness of the signal, might originate from more

or less accidental cancellations among the various entries.
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